Bessel functions and related functions¶
The functions in this section arise as solutions to various differential equations in physics, typically describing wavelike oscillatory behavior or a combination of oscillation and exponential decay or growth. Mathematically, they are special cases of the confluent hypergeometric functions \(\,_0F_1\), \(\,_1F_1\) and \(\,_1F_2\) (see Hypergeometric functions).
Bessel functions¶
besselj()
¶
- mpmath.besselj(n, x, derivative=0)¶
besselj(n, x, derivative=0)
gives the Bessel function of the first kind \(J_n(x)\). Bessel functions of the first kind are defined as solutions of the differential equation\[x^2 y'' + x y' + (x^2 - n^2) y = 0\]which appears, among other things, when solving the radial part of Laplace’s equation in cylindrical coordinates. This equation has two solutions for given \(n\), where the \(J_n\)-function is the solution that is nonsingular at \(x = 0\). For positive integer \(n\), \(J_n(x)\) behaves roughly like a sine (odd \(n\)) or cosine (even \(n\)) multiplied by a magnitude factor that decays slowly as \(x \to \pm\infty\).
Generally, \(J_n\) is a special case of the hypergeometric function \(\,_0F_1\):
\[J_n(x) = \frac{x^n}{2^n \Gamma(n+1)} \,_0F_1\left(n+1,-\frac{x^2}{4}\right)\]With derivative = \(m \ne 0\), the \(m\)-th derivative
\[\frac{d^m}{dx^m} J_n(x)\]is computed.
Plots
# Bessel function J_n(x) on the real line for n=0,1,2,3 j0 = lambda x: besselj(0,x) j1 = lambda x: besselj(1,x) j2 = lambda x: besselj(2,x) j3 = lambda x: besselj(3,x) plot([j0,j1,j2,j3],[0,14])
# Bessel function J_n(z) in the complex plane cplot(lambda z: besselj(1,z), [-8,8], [-8,8], points=50000)
Examples
Evaluation is supported for arbitrary arguments, and at arbitrary precision:
>>> from mpmath import * >>> mp.dps = 15; mp.pretty = True >>> besselj(2, 1000) -0.024777229528606 >>> besselj(4, 0.75) 0.000801070086542314 >>> besselj(2, 1000j) (-2.48071721019185e+432 + 6.41567059811949e-437j) >>> mp.dps = 25 >>> besselj(0.75j, 3+4j) (-2.778118364828153309919653 - 1.5863603889018621585533j) >>> mp.dps = 50 >>> besselj(1, pi) 0.28461534317975275734531059968613140570981118184947
Arguments may be large:
>>> mp.dps = 25 >>> besselj(0, 10000) -0.007096160353388801477265164 >>> besselj(0, 10**10) 0.000002175591750246891726859055 >>> besselj(2, 10**100) 7.337048736538615712436929e-51 >>> besselj(2, 10**5*j) (-3.540725411970948860173735e+43426 + 4.4949812409615803110051e-43433j)
The Bessel functions of the first kind satisfy simple symmetries around \(x = 0\):
>>> mp.dps = 15 >>> nprint([besselj(n,0) for n in range(5)]) [1.0, 0.0, 0.0, 0.0, 0.0] >>> nprint([besselj(n,pi) for n in range(5)]) [-0.304242, 0.284615, 0.485434, 0.333458, 0.151425] >>> nprint([besselj(n,-pi) for n in range(5)]) [-0.304242, -0.284615, 0.485434, -0.333458, 0.151425]
Roots of Bessel functions are often used:
>>> nprint([findroot(j0, k) for k in [2, 5, 8, 11, 14]]) [2.40483, 5.52008, 8.65373, 11.7915, 14.9309] >>> nprint([findroot(j1, k) for k in [3, 7, 10, 13, 16]]) [3.83171, 7.01559, 10.1735, 13.3237, 16.4706]
The roots are not periodic, but the distance between successive roots asymptotically approaches \(2 \pi\). Bessel functions of the first kind have the following normalization:
>>> quadosc(j0, [0, inf], period=2*pi) 1.0 >>> quadosc(j1, [0, inf], period=2*pi) 1.0
For \(n = 1/2\) or \(n = -1/2\), the Bessel function reduces to a trigonometric function:
>>> x = 10 >>> besselj(0.5, x), sqrt(2/(pi*x))*sin(x) (-0.13726373575505, -0.13726373575505) >>> besselj(-0.5, x), sqrt(2/(pi*x))*cos(x) (-0.211708866331398, -0.211708866331398)
Derivatives of any order can be computed (negative orders correspond to integration):
>>> mp.dps = 25 >>> besselj(0, 7.5, 1) -0.1352484275797055051822405 >>> diff(lambda x: besselj(0,x), 7.5) -0.1352484275797055051822405 >>> besselj(0, 7.5, 10) -0.1377811164763244890135677 >>> diff(lambda x: besselj(0,x), 7.5, 10) -0.1377811164763244890135677 >>> besselj(0,7.5,-1) - besselj(0,3.5,-1) -0.1241343240399987693521378 >>> quad(j0, [3.5, 7.5]) -0.1241343240399987693521378
Differentiation with a noninteger order gives the fractional derivative in the sense of the Riemann-Liouville differintegral, as computed by
differint()
:>>> mp.dps = 15 >>> besselj(1, 3.5, 0.75) -0.385977722939384 >>> differint(lambda x: besselj(1, x), 3.5, 0.75) -0.385977722939384
bessely()
¶
- mpmath.bessely(n, x, derivative=0)¶
bessely(n, x, derivative=0)
gives the Bessel function of the second kind,\[Y_n(x) = \frac{J_n(x) \cos(\pi n) - J_{-n}(x)}{\sin(\pi n)}.\]For \(n\) an integer, this formula should be understood as a limit. With derivative = \(m \ne 0\), the \(m\)-th derivative
\[\frac{d^m}{dx^m} Y_n(x)\]is computed.
Plots
# Bessel function of 2nd kind Y_n(x) on the real line for n=0,1,2,3 y0 = lambda x: bessely(0,x) y1 = lambda x: bessely(1,x) y2 = lambda x: bessely(2,x) y3 = lambda x: bessely(3,x) plot([y0,y1,y2,y3],[0,10],[-4,1])
# Bessel function of 2nd kind Y_n(z) in the complex plane cplot(lambda z: bessely(1,z), [-8,8], [-8,8], points=50000)
Examples
Some values of \(Y_n(x)\):
>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> bessely(0,0), bessely(1,0), bessely(2,0) (-inf, -inf, -inf) >>> bessely(1, pi) 0.3588729167767189594679827 >>> bessely(0.5, 3+4j) (9.242861436961450520325216 - 3.085042824915332562522402j)
Arguments may be large:
>>> bessely(0, 10000) 0.00364780555898660588668872 >>> bessely(2.5, 10**50) -4.8952500412050989295774e-26 >>> bessely(2.5, -10**50) (0.0 + 4.8952500412050989295774e-26j)
Derivatives and antiderivatives of any order can be computed:
>>> bessely(2, 3.5, 1) 0.3842618820422660066089231 >>> diff(lambda x: bessely(2, x), 3.5) 0.3842618820422660066089231 >>> bessely(0.5, 3.5, 1) -0.2066598304156764337900417 >>> diff(lambda x: bessely(0.5, x), 3.5) -0.2066598304156764337900417 >>> diff(lambda x: bessely(2, x), 0.5, 10) -208173867409.5547350101511 >>> bessely(2, 0.5, 10) -208173867409.5547350101511 >>> bessely(2, 100.5, 100) 0.02668487547301372334849043 >>> quad(lambda x: bessely(2,x), [1,3]) -1.377046859093181969213262 >>> bessely(2,3,-1) - bessely(2,1,-1) -1.377046859093181969213262
besseli()
¶
- mpmath.besseli(n, x, derivative=0)¶
besseli(n, x, derivative=0)
gives the modified Bessel function of the first kind,\[I_n(x) = i^{-n} J_n(ix).\]With derivative = \(m \ne 0\), the \(m\)-th derivative
\[\frac{d^m}{dx^m} I_n(x)\]is computed.
Plots
# Modified Bessel function I_n(x) on the real line for n=0,1,2,3 i0 = lambda x: besseli(0,x) i1 = lambda x: besseli(1,x) i2 = lambda x: besseli(2,x) i3 = lambda x: besseli(3,x) plot([i0,i1,i2,i3],[0,5],[0,5])
# Modified Bessel function I_n(z) in the complex plane cplot(lambda z: besseli(1,z), [-8,8], [-8,8], points=50000)
Examples
Some values of \(I_n(x)\):
>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> besseli(0,0) 1.0 >>> besseli(1,0) 0.0 >>> besseli(0,1) 1.266065877752008335598245 >>> besseli(3.5, 2+3j) (-0.2904369752642538144289025 - 0.4469098397654815837307006j)
Arguments may be large:
>>> besseli(2, 1000) 2.480717210191852440616782e+432 >>> besseli(2, 10**10) 4.299602851624027900335391e+4342944813 >>> besseli(2, 6000+10000j) (-2.114650753239580827144204e+2603 + 4.385040221241629041351886e+2602j)
For integers \(n\), the following integral representation holds:
>>> mp.dps = 15 >>> n = 3 >>> x = 2.3 >>> quad(lambda t: exp(x*cos(t))*cos(n*t), [0,pi])/pi 0.349223221159309 >>> besseli(n,x) 0.349223221159309
Derivatives and antiderivatives of any order can be computed:
>>> mp.dps = 25 >>> besseli(2, 7.5, 1) 195.8229038931399062565883 >>> diff(lambda x: besseli(2,x), 7.5) 195.8229038931399062565883 >>> besseli(2, 7.5, 10) 153.3296508971734525525176 >>> diff(lambda x: besseli(2,x), 7.5, 10) 153.3296508971734525525176 >>> besseli(2,7.5,-1) - besseli(2,3.5,-1) 202.5043900051930141956876 >>> quad(lambda x: besseli(2,x), [3.5, 7.5]) 202.5043900051930141956876
besselk()
¶
- mpmath.besselk(n, x)¶
besselk(n, x)
gives the modified Bessel function of the second kind,\[K_n(x) = \frac{\pi}{2} \frac{I_{-n}(x)-I_{n}(x)}{\sin(\pi n)}\]For \(n\) an integer, this formula should be understood as a limit.
Plots
# Modified Bessel function of 2nd kind K_n(x) on the real line for n=0,1,2,3 k0 = lambda x: besselk(0,x) k1 = lambda x: besselk(1,x) k2 = lambda x: besselk(2,x) k3 = lambda x: besselk(3,x) plot([k0,k1,k2,k3],[0,8],[0,5])
# Modified Bessel function of 2nd kind K_n(z) in the complex plane cplot(lambda z: besselk(1,z), [-8,8], [-8,8], points=50000)
Examples
Evaluation is supported for arbitrary complex arguments:
>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> besselk(0,1) 0.4210244382407083333356274 >>> besselk(0, -1) (0.4210244382407083333356274 - 3.97746326050642263725661j) >>> besselk(3.5, 2+3j) (-0.02090732889633760668464128 + 0.2464022641351420167819697j) >>> besselk(2+3j, 0.5) (0.9615816021726349402626083 + 0.1918250181801757416908224j)
Arguments may be large:
>>> besselk(0, 100) 4.656628229175902018939005e-45 >>> besselk(1, 10**6) 4.131967049321725588398296e-434298 >>> besselk(1, 10**6*j) (0.001140348428252385844876706 - 0.0005200017201681152909000961j) >>> besselk(4.5, fmul(10**50, j, exact=True)) (1.561034538142413947789221e-26 + 1.243554598118700063281496e-25j)
The point \(x = 0\) is a singularity (logarithmic if \(n = 0\)):
>>> besselk(0,0) +inf >>> besselk(1,0) +inf >>> for n in range(-4, 5): ... print(besselk(n, '1e-1000')) ... 4.8e+4001 8.0e+3000 2.0e+2000 1.0e+1000 2302.701024509704096466802 1.0e+1000 2.0e+2000 8.0e+3000 4.8e+4001
Bessel function zeros¶
besseljzero()
¶
- mpmath.besseljzero(v, m, derivative=0)¶
For a real order \(\nu \ge 0\) and a positive integer \(m\), returns \(j_{\nu,m}\), the \(m\)-th positive zero of the Bessel function of the first kind \(J_{\nu}(z)\) (see
besselj()
). Alternatively, with derivative=1, gives the first nonnegative simple zero \(j'_{\nu,m}\) of \(J'_{\nu}(z)\).The indexing convention is that used by Abramowitz & Stegun and the DLMF. Note the special case \(j'_{0,1} = 0\), while all other zeros are positive. In effect, only simple zeros are counted (all zeros of Bessel functions are simple except possibly \(z = 0\)) and \(j_{\nu,m}\) becomes a monotonic function of both \(\nu\) and \(m\).
The zeros are interlaced according to the inequalities
\[ \begin{align}\begin{aligned}j'_{\nu,k} < j_{\nu,k} < j'_{\nu,k+1}\\j_{\nu,1} < j_{\nu+1,2} < j_{\nu,2} < j_{\nu+1,2} < j_{\nu,3} < \cdots\end{aligned}\end{align} \]Examples
Initial zeros of the Bessel functions \(J_0(z), J_1(z), J_2(z)\):
>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> besseljzero(0,1); besseljzero(0,2); besseljzero(0,3) 2.404825557695772768621632 5.520078110286310649596604 8.653727912911012216954199 >>> besseljzero(1,1); besseljzero(1,2); besseljzero(1,3) 3.831705970207512315614436 7.01558666981561875353705 10.17346813506272207718571 >>> besseljzero(2,1); besseljzero(2,2); besseljzero(2,3) 5.135622301840682556301402 8.417244140399864857783614 11.61984117214905942709415
Initial zeros of \(J'_0(z), J'_1(z), J'_2(z)\):
0.0 3.831705970207512315614436 7.01558666981561875353705 >>> besseljzero(1,1,1); besseljzero(1,2,1); besseljzero(1,3,1) 1.84118378134065930264363 5.331442773525032636884016 8.536316366346285834358961 >>> besseljzero(2,1,1); besseljzero(2,2,1); besseljzero(2,3,1) 3.054236928227140322755932 6.706133194158459146634394 9.969467823087595793179143
Zeros with large index:
>>> besseljzero(0,100); besseljzero(0,1000); besseljzero(0,10000) 313.3742660775278447196902 3140.807295225078628895545 31415.14114171350798533666 >>> besseljzero(5,100); besseljzero(5,1000); besseljzero(5,10000) 321.1893195676003157339222 3148.657306813047523500494 31422.9947255486291798943 >>> besseljzero(0,100,1); besseljzero(0,1000,1); besseljzero(0,10000,1) 311.8018681873704508125112 3139.236339643802482833973 31413.57032947022399485808
Zeros of functions with large order:
>>> besseljzero(50,1) 57.11689916011917411936228 >>> besseljzero(50,2) 62.80769876483536093435393 >>> besseljzero(50,100) 388.6936600656058834640981 >>> besseljzero(50,1,1) 52.99764038731665010944037 >>> besseljzero(50,2,1) 60.02631933279942589882363 >>> besseljzero(50,100,1) 387.1083151608726181086283
Zeros of functions with fractional order:
>>> besseljzero(0.5,1); besseljzero(1.5,1); besseljzero(2.25,4) 3.141592653589793238462643 4.493409457909064175307881 15.15657692957458622921634
Both \(J_{\nu}(z)\) and \(J'_{\nu}(z)\) can be expressed as infinite products over their zeros:
>>> v,z = 2, mpf(1) >>> (z/2)**v/gamma(v+1) * \ ... nprod(lambda k: 1-(z/besseljzero(v,k))**2, [1,inf]) ... 0.1149034849319004804696469 >>> besselj(v,z) 0.1149034849319004804696469 >>> (z/2)**(v-1)/2/gamma(v) * \ ... nprod(lambda k: 1-(z/besseljzero(v,k,1))**2, [1,inf]) ... 0.2102436158811325550203884 >>> besselj(v,z,1) 0.2102436158811325550203884
besselyzero()
¶
- mpmath.besselyzero(v, m, derivative=0)¶
For a real order \(\nu \ge 0\) and a positive integer \(m\), returns \(y_{\nu,m}\), the \(m\)-th positive zero of the Bessel function of the second kind \(Y_{\nu}(z)\) (see
bessely()
). Alternatively, with derivative=1, gives the first positive zero \(y'_{\nu,m}\) of \(Y'_{\nu}(z)\).The zeros are interlaced according to the inequalities
\[ \begin{align}\begin{aligned}y_{\nu,k} < y'_{\nu,k} < y_{\nu,k+1}\\y_{\nu,1} < y_{\nu+1,2} < y_{\nu,2} < y_{\nu+1,2} < y_{\nu,3} < \cdots\end{aligned}\end{align} \]Examples
Initial zeros of the Bessel functions \(Y_0(z), Y_1(z), Y_2(z)\):
>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> besselyzero(0,1); besselyzero(0,2); besselyzero(0,3) 0.8935769662791675215848871 3.957678419314857868375677 7.086051060301772697623625 >>> besselyzero(1,1); besselyzero(1,2); besselyzero(1,3) 2.197141326031017035149034 5.429681040794135132772005 8.596005868331168926429606 >>> besselyzero(2,1); besselyzero(2,2); besselyzero(2,3) 3.384241767149593472701426 6.793807513268267538291167 10.02347797936003797850539
Initial zeros of \(Y'_0(z), Y'_1(z), Y'_2(z)\):
>>> besselyzero(0,1,1); besselyzero(0,2,1); besselyzero(0,3,1) 2.197141326031017035149034 5.429681040794135132772005 8.596005868331168926429606 >>> besselyzero(1,1,1); besselyzero(1,2,1); besselyzero(1,3,1) 3.683022856585177699898967 6.941499953654175655751944 10.12340465543661307978775 >>> besselyzero(2,1,1); besselyzero(2,2,1); besselyzero(2,3,1) 5.002582931446063945200176 8.350724701413079526349714 11.57419546521764654624265
Zeros with large index:
>>> besselyzero(0,100); besselyzero(0,1000); besselyzero(0,10000) 311.8034717601871549333419 3139.236498918198006794026 31413.57034538691205229188 >>> besselyzero(5,100); besselyzero(5,1000); besselyzero(5,10000) 319.6183338562782156235062 3147.086508524556404473186 31421.42392920214673402828 >>> besselyzero(0,100,1); besselyzero(0,1000,1); besselyzero(0,10000,1) 313.3726705426359345050449 3140.807136030340213610065 31415.14112579761578220175
Zeros of functions with large order:
>>> besselyzero(50,1) 53.50285882040036394680237 >>> besselyzero(50,2) 60.11244442774058114686022 >>> besselyzero(50,100) 387.1096509824943957706835 >>> besselyzero(50,1,1) 56.96290427516751320063605 >>> besselyzero(50,2,1) 62.74888166945933944036623 >>> besselyzero(50,100,1) 388.6923300548309258355475
Zeros of functions with fractional order:
>>> besselyzero(0.5,1); besselyzero(1.5,1); besselyzero(2.25,4) 1.570796326794896619231322 2.798386045783887136720249 13.56721208770735123376018
Hankel functions¶
hankel1()
¶
- mpmath.hankel1(n, x)¶
hankel1(n,x)
computes the Hankel function of the first kind, which is the complex combination of Bessel functions given by\[H_n^{(1)}(x) = J_n(x) + i Y_n(x).\]Plots
# Hankel function H1_n(x) on the real line for n=0,1,2,3 h0 = lambda x: hankel1(0,x) h1 = lambda x: hankel1(1,x) h2 = lambda x: hankel1(2,x) h3 = lambda x: hankel1(3,x) plot([h0,h1,h2,h3],[0,6],[-2,1])
# Hankel function H1_n(z) in the complex plane cplot(lambda z: hankel1(1,z), [-8,8], [-8,8], points=50000)
Examples
The Hankel function is generally complex-valued:
>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> hankel1(2, pi) (0.4854339326315091097054957 - 0.0999007139290278787734903j) >>> hankel1(3.5, pi) (0.2340002029630507922628888 - 0.6419643823412927142424049j)
hankel2()
¶
- mpmath.hankel2(n, x)¶
hankel2(n,x)
computes the Hankel function of the second kind, which is the complex combination of Bessel functions given by\[H_n^{(2)}(x) = J_n(x) - i Y_n(x).\]Plots
# Hankel function H2_n(x) on the real line for n=0,1,2,3 h0 = lambda x: hankel2(0,x) h1 = lambda x: hankel2(1,x) h2 = lambda x: hankel2(2,x) h3 = lambda x: hankel2(3,x) plot([h0,h1,h2,h3],[0,6],[-1,2])
# Hankel function H2_n(z) in the complex plane cplot(lambda z: hankel2(1,z), [-8,8], [-8,8], points=50000)
Examples
The Hankel function is generally complex-valued:
>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> hankel2(2, pi) (0.4854339326315091097054957 + 0.0999007139290278787734903j) >>> hankel2(3.5, pi) (0.2340002029630507922628888 + 0.6419643823412927142424049j)
Kelvin functions¶
ber()
¶
- mpmath.ber(n, z, **kwargs)¶
Computes the Kelvin function ber, which for real arguments gives the real part of the Bessel J function of a rotated argument
\[J_n\left(x e^{3\pi i/4}\right) = \mathrm{ber}_n(x) + i \mathrm{bei}_n(x).\]The imaginary part is given by
bei()
.Plots
# Kelvin functions ber_n(x) and bei_n(x) on the real line for n=0,2 f0 = lambda x: ber(0,x) f1 = lambda x: bei(0,x) f2 = lambda x: ber(2,x) f3 = lambda x: bei(2,x) plot([f0,f1,f2,f3],[0,10],[-10,10])
Examples
Verifying the defining relation:
>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> n, x = 2, 3.5 >>> ber(n,x) 1.442338852571888752631129 >>> bei(n,x) -0.948359035324558320217678 >>> besselj(n, x*root(1,8,3)) (1.442338852571888752631129 - 0.948359035324558320217678j)
The ber and bei functions are also defined by analytic continuation for complex arguments:
>>> ber(1+j, 2+3j) (4.675445984756614424069563 - 15.84901771719130765656316j) >>> bei(1+j, 2+3j) (15.83886679193707699364398 + 4.684053288183046528703611j)
bei()
¶
ker()
¶
- mpmath.ker(n, z, **kwargs)¶
Computes the Kelvin function ker, which for real arguments gives the real part of the (rescaled) Bessel K function of a rotated argument
\[e^{-\pi i/2} K_n\left(x e^{3\pi i/4}\right) = \mathrm{ker}_n(x) + i \mathrm{kei}_n(x).\]The imaginary part is given by
kei()
.Plots
# Kelvin functions ker_n(x) and kei_n(x) on the real line for n=0,2 f0 = lambda x: ker(0,x) f1 = lambda x: kei(0,x) f2 = lambda x: ker(2,x) f3 = lambda x: kei(2,x) plot([f0,f1,f2,f3],[0,5],[-1,4])
Examples
Verifying the defining relation:
>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> n, x = 2, 4.5 >>> ker(n,x) 0.02542895201906369640249801 >>> kei(n,x) -0.02074960467222823237055351 >>> exp(-n*pi*j/2) * besselk(n, x*root(1,8,1)) (0.02542895201906369640249801 - 0.02074960467222823237055351j)
The ker and kei functions are also defined by analytic continuation for complex arguments:
>>> ker(1+j, 3+4j) (1.586084268115490421090533 - 2.939717517906339193598719j) >>> kei(1+j, 3+4j) (-2.940403256319453402690132 - 1.585621643835618941044855j)
kei()
¶
Struve functions¶
struveh()
¶
- mpmath.struveh(n, z, **kwargs)¶
Gives the Struve function
\[\,\mathbf{H}_n(z) = \sum_{k=0}^\infty \frac{(-1)^k}{\Gamma(k+\frac{3}{2}) \Gamma(k+n+\frac{3}{2})} {\left({\frac{z}{2}}\right)}^{2k+n+1}\]which is a solution to the Struve differential equation
\[z^2 f''(z) + z f'(z) + (z^2-n^2) f(z) = \frac{2 z^{n+1}}{\pi (2n-1)!!}.\]Examples
Evaluation for arbitrary real and complex arguments:
>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> struveh(0, 3.5) 0.3608207733778295024977797 >>> struveh(-1, 10) -0.255212719726956768034732 >>> struveh(1, -100.5) 0.5819566816797362287502246 >>> struveh(2.5, 10000000000000) 3153915652525200060.308937 >>> struveh(2.5, -10000000000000) (0.0 - 3153915652525200060.308937j) >>> struveh(1+j, 1000000+4000000j) (-3.066421087689197632388731e+1737173 - 1.596619701076529803290973e+1737173j)
A Struve function of half-integer order is elementary; for example:
>>> z = 3 >>> struveh(0.5, 3) 0.9167076867564138178671595 >>> sqrt(2/(pi*z))*(1-cos(z)) 0.9167076867564138178671595
Numerically verifying the differential equation:
>>> z = mpf(4.5) >>> n = 3 >>> f = lambda z: struveh(n,z) >>> lhs = z**2*diff(f,z,2) + z*diff(f,z) + (z**2-n**2)*f(z) >>> rhs = 2*z**(n+1)/fac2(2*n-1)/pi >>> lhs 17.40359302709875496632744 >>> rhs 17.40359302709875496632744
struvel()
¶
- mpmath.struvel(n, z, **kwargs)¶
Gives the modified Struve function
\[\,\mathbf{L}_n(z) = -i e^{-n\pi i/2} \mathbf{H}_n(i z)\]which solves to the modified Struve differential equation
\[z^2 f''(z) + z f'(z) - (z^2+n^2) f(z) = \frac{2 z^{n+1}}{\pi (2n-1)!!}.\]Examples
Evaluation for arbitrary real and complex arguments:
>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> struvel(0, 3.5) 7.180846515103737996249972 >>> struvel(-1, 10) 2670.994904980850550721511 >>> struvel(1, -100.5) 1.757089288053346261497686e+42 >>> struvel(2.5, 10000000000000) 4.160893281017115450519948e+4342944819025 >>> struvel(2.5, -10000000000000) (0.0 - 4.160893281017115450519948e+4342944819025j) >>> struvel(1+j, 700j) (-0.1721150049480079451246076 + 0.1240770953126831093464055j) >>> struvel(1+j, 1000000+4000000j) (-2.973341637511505389128708e+434290 - 5.164633059729968297147448e+434290j)
Numerically verifying the differential equation:
>>> z = mpf(3.5) >>> n = 3 >>> f = lambda z: struvel(n,z) >>> lhs = z**2*diff(f,z,2) + z*diff(f,z) - (z**2+n**2)*f(z) >>> rhs = 2*z**(n+1)/fac2(2*n-1)/pi >>> lhs 6.368850306060678353018165 >>> rhs 6.368850306060678353018165
Anger-Weber functions¶
angerj()
¶
- mpmath.angerj(v, z, **kwargs)¶
Gives the Anger function
\[\mathbf{J}_{\nu}(z) = \frac{1}{\pi} \int_0^{\pi} \cos(\nu t - z \sin t) dt\]which is an entire function of both the parameter \(\nu\) and the argument \(z\). It solves the inhomogeneous Bessel differential equation
\[f''(z) + \frac{1}{z}f'(z) + \left(1-\frac{\nu^2}{z^2}\right) f(z) = \frac{(z-\nu)}{\pi z^2} \sin(\pi \nu).\]Examples
Evaluation for real and complex parameter and argument:
>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> angerj(2,3) 0.4860912605858910769078311 >>> angerj(-3+4j, 2+5j) (-5033.358320403384472395612 + 585.8011892476145118551756j) >>> angerj(3.25, 1e6j) (4.630743639715893346570743e+434290 - 1.117960409887505906848456e+434291j) >>> angerj(-1.5, 1e6) 0.0002795719747073879393087011
The Anger function coincides with the Bessel J-function when \(\nu\) is an integer:
>>> angerj(1,3); besselj(1,3) 0.3390589585259364589255146 0.3390589585259364589255146 >>> angerj(1.5,3); besselj(1.5,3) 0.4088969848691080859328847 0.4777182150870917715515015
Verifying the differential equation:
>>> v,z = mpf(2.25), 0.75 >>> f = lambda z: angerj(v,z) >>> diff(f,z,2) + diff(f,z)/z + (1-(v/z)**2)*f(z) -0.6002108774380707130367995 >>> (z-v)/(pi*z**2) * sinpi(v) -0.6002108774380707130367995
Verifying the integral representation:
>>> angerj(v,z) 0.1145380759919333180900501 >>> quad(lambda t: cos(v*t-z*sin(t))/pi, [0,pi]) 0.1145380759919333180900501
References
[DLMF] section 11.10: Anger-Weber Functions
webere()
¶
- mpmath.webere(v, z, **kwargs)¶
Gives the Weber function
\[\mathbf{E}_{\nu}(z) = \frac{1}{\pi} \int_0^{\pi} \sin(\nu t - z \sin t) dt\]which is an entire function of both the parameter \(\nu\) and the argument \(z\). It solves the inhomogeneous Bessel differential equation
\[f''(z) + \frac{1}{z}f'(z) + \left(1-\frac{\nu^2}{z^2}\right) f(z) = -\frac{1}{\pi z^2} (z+\nu+(z-\nu)\cos(\pi \nu)).\]Examples
Evaluation for real and complex parameter and argument:
>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> webere(2,3) -0.1057668973099018425662646 >>> webere(-3+4j, 2+5j) (-585.8081418209852019290498 - 5033.314488899926921597203j) >>> webere(3.25, 1e6j) (-1.117960409887505906848456e+434291 - 4.630743639715893346570743e+434290j) >>> webere(3.25, 1e6) -0.00002812518265894315604914453
Up to addition of a rational function of \(z\), the Weber function coincides with the Struve H-function when \(\nu\) is an integer:
>>> webere(1,3); 2/pi-struveh(1,3) -0.3834897968188690177372881 -0.3834897968188690177372881 >>> webere(5,3); 26/(35*pi)-struveh(5,3) 0.2009680659308154011878075 0.2009680659308154011878075
Verifying the differential equation:
>>> v,z = mpf(2.25), 0.75 >>> f = lambda z: webere(v,z) >>> diff(f,z,2) + diff(f,z)/z + (1-(v/z)**2)*f(z) -1.097441848875479535164627 >>> -(z+v+(z-v)*cospi(v))/(pi*z**2) -1.097441848875479535164627
Verifying the integral representation:
>>> webere(v,z) 0.1486507351534283744485421 >>> quad(lambda t: sin(v*t-z*sin(t))/pi, [0,pi]) 0.1486507351534283744485421
References
[DLMF] section 11.10: Anger-Weber Functions
Lommel functions¶
lommels1()
¶
- mpmath.lommels1(u, v, z, **kwargs)¶
Gives the Lommel function \(s_{\mu,\nu}\) or \(s^{(1)}_{\mu,\nu}\)
\[s_{\mu,\nu}(z) = \frac{z^{\mu+1}}{(\mu-\nu+1)(\mu+\nu+1)} \,_1F_2\left(1; \frac{\mu-\nu+3}{2}, \frac{\mu+\nu+3}{2}; -\frac{z^2}{4} \right)\]which solves the inhomogeneous Bessel equation
\[z^2 f''(z) + z f'(z) + (z^2-\nu^2) f(z) = z^{\mu+1}.\]A second solution is given by
lommels2()
.Plots
# Lommel function s_(u,v)(x) on the real line for a few different u,v f1 = lambda x: lommels1(-1,2.5,x) f2 = lambda x: lommels1(0,0.5,x) f3 = lambda x: lommels1(0,6,x) f4 = lambda x: lommels1(0.5,3,x) plot([f1,f2,f3,f4], [0,20])
Examples
An integral representation:
>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> u,v,z = 0.25, 0.125, mpf(0.75) >>> lommels1(u,v,z) 0.4276243877565150372999126 >>> (bessely(v,z)*quad(lambda t: t**u*besselj(v,t), [0,z]) - \ ... besselj(v,z)*quad(lambda t: t**u*bessely(v,t), [0,z]))*(pi/2) 0.4276243877565150372999126
A special value:
>>> lommels1(v,v,z) 0.5461221367746048054932553 >>> gamma(v+0.5)*sqrt(pi)*power(2,v-1)*struveh(v,z) 0.5461221367746048054932553
Verifying the differential equation:
>>> f = lambda z: lommels1(u,v,z) >>> z**2*diff(f,z,2) + z*diff(f,z) + (z**2-v**2)*f(z) 0.6979536443265746992059141 >>> z**(u+1) 0.6979536443265746992059141
References
lommels2()
¶
- mpmath.lommels2(u, v, z, **kwargs)¶
Gives the second Lommel function \(S_{\mu,\nu}\) or \(s^{(2)}_{\mu,\nu}\)
\[ \begin{align}\begin{aligned}S_{\mu,\nu}(z) = s_{\mu,\nu}(z) + 2^{\mu-1} \Gamma\left(\tfrac{1}{2}(\mu-\nu+1)\right) \Gamma\left(\tfrac{1}{2}(\mu+\nu+1)\right) \times\\ \left[\sin(\tfrac{1}{2}(\mu-\nu)\pi) J_{\nu}(z) - \cos(\tfrac{1}{2}(\mu-\nu)\pi) Y_{\nu}(z) \right]\end{aligned}\end{align} \]which solves the same differential equation as
lommels1()
.Plots
# Lommel function S_(u,v)(x) on the real line for a few different u,v f1 = lambda x: lommels2(-1,2.5,x) f2 = lambda x: lommels2(1.5,2,x) f3 = lambda x: lommels2(2.5,1,x) f4 = lambda x: lommels2(3.5,-0.5,x) plot([f1,f2,f3,f4], [0,8], [-8,8])
Examples
For large \(|z|\), \(S_{\mu,\nu} \sim z^{\mu-1}\):
>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> lommels2(10,2,30000) 1.968299831601008419949804e+40 >>> power(30000,9) 1.9683e+40
A special value:
>>> u,v,z = 0.5, 0.125, mpf(0.75) >>> lommels2(v,v,z) 0.9589683199624672099969765 >>> (struveh(v,z)-bessely(v,z))*power(2,v-1)*sqrt(pi)*gamma(v+0.5) 0.9589683199624672099969765
Verifying the differential equation:
>>> f = lambda z: lommels2(u,v,z) >>> z**2*diff(f,z,2) + z*diff(f,z) + (z**2-v**2)*f(z) 0.6495190528383289850727924 >>> z**(u+1) 0.6495190528383289850727924
References
Airy and Scorer functions¶
airyai()
¶
- mpmath.airyai(z, derivative=0, **kwargs)¶
Computes the Airy function \(\operatorname{Ai}(z)\), which is the solution of the Airy differential equation \(f''(z) - z f(z) = 0\) with initial conditions
\[ \begin{align}\begin{aligned}\operatorname{Ai}(0) = \frac{1}{3^{2/3}\Gamma\left(\frac{2}{3}\right)}\\\operatorname{Ai}'(0) = -\frac{1}{3^{1/3}\Gamma\left(\frac{1}{3}\right)}.\end{aligned}\end{align} \]Other common ways of defining the Ai-function include integrals such as
\[ \begin{align}\begin{aligned}\operatorname{Ai}(x) = \frac{1}{\pi} \int_0^{\infty} \cos\left(\frac{1}{3}t^3+xt\right) dt \qquad x \in \mathbb{R}\\\operatorname{Ai}(z) = \frac{\sqrt{3}}{2\pi} \int_0^{\infty} \exp\left(-\frac{t^3}{3}-\frac{z^3}{3t^3}\right) dt.\end{aligned}\end{align} \]The Ai-function is an entire function with a turning point, behaving roughly like a slowly decaying sine wave for \(z < 0\) and like a rapidly decreasing exponential for \(z > 0\). A second solution of the Airy differential equation is given by \(\operatorname{Bi}(z)\) (see
airybi()
).Optionally, with derivative=alpha,
airyai()
can compute the \(\alpha\)-th order fractional derivative with respect to \(z\). For \(\alpha = n = 1,2,3,\ldots\) this gives the derivative \(\operatorname{Ai}^{(n)}(z)\), and for \(\alpha = -n = -1,-2,-3,\ldots\) this gives the \(n\)-fold iterated integral\[ \begin{align}\begin{aligned}f_0(z) = \operatorname{Ai}(z)\\f_n(z) = \int_0^z f_{n-1}(t) dt.\end{aligned}\end{align} \]The Ai-function has infinitely many zeros, all located along the negative half of the real axis. They can be computed with
airyaizero()
.Plots
# Airy function Ai(x), Ai'(x) and int_0^x Ai(t) dt on the real line f = airyai f_diff = lambda z: airyai(z, derivative=1) f_int = lambda z: airyai(z, derivative=-1) plot([f, f_diff, f_int], [-10,5])
# Airy function Ai(z) in the complex plane cplot(airyai, [-8,8], [-8,8], points=50000)
Basic examples
Limits and values include:
>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> airyai(0); 1/(power(3,'2/3')*gamma('2/3')) 0.3550280538878172392600632 0.3550280538878172392600632 >>> airyai(1) 0.1352924163128814155241474 >>> airyai(-1) 0.5355608832923521187995166 >>> airyai(inf); airyai(-inf) 0.0 0.0
Evaluation is supported for large magnitudes of the argument:
>>> airyai(-100) 0.1767533932395528780908311 >>> airyai(100) 2.634482152088184489550553e-291 >>> airyai(50+50j) (-5.31790195707456404099817e-68 - 1.163588003770709748720107e-67j) >>> airyai(-50+50j) (1.041242537363167632587245e+158 + 3.347525544923600321838281e+157j)
Huge arguments are also fine:
>>> airyai(10**10) 1.162235978298741779953693e-289529654602171 >>> airyai(-10**10) 0.0001736206448152818510510181 >>> w = airyai(10**10*(1+j)) >>> w.real 5.711508683721355528322567e-186339621747698 >>> w.imag 1.867245506962312577848166e-186339621747697
The first root of the Ai-function is:
>>> findroot(airyai, -2) -2.338107410459767038489197 >>> airyaizero(1) -2.338107410459767038489197
Properties and relations
Verifying the Airy differential equation:
>>> for z in [-3.4, 0, 2.5, 1+2j]: ... chop(airyai(z,2) - z*airyai(z)) ... 0.0 0.0 0.0 0.0
The first few terms of the Taylor series expansion around \(z = 0\) (every third term is zero):
>>> nprint(taylor(airyai, 0, 5)) [0.355028, -0.258819, 0.0, 0.0591713, -0.0215683, 0.0]
The Airy functions satisfy the Wronskian relation \(\operatorname{Ai}(z) \operatorname{Bi}'(z) - \operatorname{Ai}'(z) \operatorname{Bi}(z) = 1/\pi\):
>>> z = -0.5 >>> airyai(z)*airybi(z,1) - airyai(z,1)*airybi(z) 0.3183098861837906715377675 >>> 1/pi 0.3183098861837906715377675
The Airy functions can be expressed in terms of Bessel functions of order \(\pm 1/3\). For \(\Re[z] \le 0\), we have:
>>> z = -3 >>> airyai(z) -0.3788142936776580743472439 >>> y = 2*power(-z,'3/2')/3 >>> (sqrt(-z) * (besselj('1/3',y) + besselj('-1/3',y)))/3 -0.3788142936776580743472439
Derivatives and integrals
Derivatives of the Ai-function (directly and using
diff()
):>>> airyai(-3,1); diff(airyai,-3) 0.3145837692165988136507873 0.3145837692165988136507873 >>> airyai(-3,2); diff(airyai,-3,2) 1.136442881032974223041732 1.136442881032974223041732 >>> airyai(1000,1); diff(airyai,1000) -2.943133917910336090459748e-9156 -2.943133917910336090459748e-9156
Several derivatives at \(z = 0\):
>>> airyai(0,0); airyai(0,1); airyai(0,2) 0.3550280538878172392600632 -0.2588194037928067984051836 0.0 >>> airyai(0,3); airyai(0,4); airyai(0,5) 0.3550280538878172392600632 -0.5176388075856135968103671 0.0 >>> airyai(0,15); airyai(0,16); airyai(0,17) 1292.30211615165475090663 -3188.655054727379756351861 0.0
The integral of the Ai-function:
>>> airyai(3,-1); quad(airyai, [0,3]) 0.3299203760070217725002701 0.3299203760070217725002701 >>> airyai(-10,-1); quad(airyai, [0,-10]) -0.765698403134212917425148 -0.765698403134212917425148
Integrals of high or fractional order:
>>> airyai(-2,0.5); differint(airyai,-2,0.5,0) (0.0 + 0.2453596101351438273844725j) (0.0 + 0.2453596101351438273844725j) >>> airyai(-2,-4); differint(airyai,-2,-4,0) 0.2939176441636809580339365 0.2939176441636809580339365 >>> airyai(0,-1); airyai(0,-2); airyai(0,-3) 0.0 0.0 0.0
Integrals of the Ai-function can be evaluated at limit points:
>>> airyai(-1000000,-1); airyai(-inf,-1) -0.6666843728311539978751512 -0.6666666666666666666666667 >>> airyai(10,-1); airyai(+inf,-1) 0.3333333332991690159427932 0.3333333333333333333333333 >>> airyai(+inf,-2); airyai(+inf,-3) +inf +inf >>> airyai(-1000000,-2); airyai(-inf,-2) 666666.4078472650651209742 +inf >>> airyai(-1000000,-3); airyai(-inf,-3) -333333074513.7520264995733 -inf
References
[DLMF] Chapter 9: Airy and Related Functions
[WolframFunctions] section: Bessel-Type Functions
airybi()
¶
- mpmath.airybi(z, derivative=0, **kwargs)¶
Computes the Airy function \(\operatorname{Bi}(z)\), which is the solution of the Airy differential equation \(f''(z) - z f(z) = 0\) with initial conditions
\[ \begin{align}\begin{aligned}\operatorname{Bi}(0) = \frac{1}{3^{1/6}\Gamma\left(\frac{2}{3}\right)}\\\operatorname{Bi}'(0) = \frac{3^{1/6}}{\Gamma\left(\frac{1}{3}\right)}.\end{aligned}\end{align} \]Like the Ai-function (see
airyai()
), the Bi-function is oscillatory for \(z < 0\), but it grows rather than decreases for \(z > 0\).Optionally, as for
airyai()
, derivatives, integrals and fractional derivatives can be computed with the derivative parameter.The Bi-function has infinitely many zeros along the negative half-axis, as well as complex zeros, which can all be computed with
airybizero()
.Plots
# Airy function Bi(x), Bi'(x) and int_0^x Bi(t) dt on the real line f = airybi f_diff = lambda z: airybi(z, derivative=1) f_int = lambda z: airybi(z, derivative=-1) plot([f, f_diff, f_int], [-10,2], [-1,2])
# Airy function Bi(z) in the complex plane cplot(airybi, [-8,8], [-8,8], points=50000)
Basic examples
Limits and values include:
>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> airybi(0); 1/(power(3,'1/6')*gamma('2/3')) 0.6149266274460007351509224 0.6149266274460007351509224 >>> airybi(1) 1.207423594952871259436379 >>> airybi(-1) 0.10399738949694461188869 >>> airybi(inf); airybi(-inf) +inf 0.0
Evaluation is supported for large magnitudes of the argument:
>>> airybi(-100) 0.02427388768016013160566747 >>> airybi(100) 6.041223996670201399005265e+288 >>> airybi(50+50j) (-5.322076267321435669290334e+63 + 1.478450291165243789749427e+65j) >>> airybi(-50+50j) (-3.347525544923600321838281e+157 + 1.041242537363167632587245e+158j)
Huge arguments:
>>> airybi(10**10) 1.369385787943539818688433e+289529654602165 >>> airybi(-10**10) 0.001775656141692932747610973 >>> w = airybi(10**10*(1+j)) >>> w.real -6.559955931096196875845858e+186339621747689 >>> w.imag -6.822462726981357180929024e+186339621747690
The first real root of the Bi-function is:
>>> findroot(airybi, -1); airybizero(1) -1.17371322270912792491998 -1.17371322270912792491998
Properties and relations
Verifying the Airy differential equation:
>>> for z in [-3.4, 0, 2.5, 1+2j]: ... chop(airybi(z,2) - z*airybi(z)) ... 0.0 0.0 0.0 0.0
The first few terms of the Taylor series expansion around \(z = 0\) (every third term is zero):
>>> nprint(taylor(airybi, 0, 5)) [0.614927, 0.448288, 0.0, 0.102488, 0.0373574, 0.0]
The Airy functions can be expressed in terms of Bessel functions of order \(\pm 1/3\). For \(\Re[z] \le 0\), we have:
>>> z = -3 >>> airybi(z) -0.1982896263749265432206449 >>> p = 2*power(-z,'3/2')/3 >>> sqrt(-mpf(z)/3)*(besselj('-1/3',p) - besselj('1/3',p)) -0.1982896263749265432206449
Derivatives and integrals
Derivatives of the Bi-function (directly and using
diff()
):>>> airybi(-3,1); diff(airybi,-3) -0.675611222685258537668032 -0.675611222685258537668032 >>> airybi(-3,2); diff(airybi,-3,2) 0.5948688791247796296619346 0.5948688791247796296619346 >>> airybi(1000,1); diff(airybi,1000) 1.710055114624614989262335e+9156 1.710055114624614989262335e+9156
Several derivatives at \(z = 0\):
>>> airybi(0,0); airybi(0,1); airybi(0,2) 0.6149266274460007351509224 0.4482883573538263579148237 0.0 >>> airybi(0,3); airybi(0,4); airybi(0,5) 0.6149266274460007351509224 0.8965767147076527158296474 0.0 >>> airybi(0,15); airybi(0,16); airybi(0,17) 2238.332923903442675949357 5522.912562599140729510628 0.0
The integral of the Bi-function:
>>> airybi(3,-1); quad(airybi, [0,3]) 10.06200303130620056316655 10.06200303130620056316655 >>> airybi(-10,-1); quad(airybi, [0,-10]) -0.01504042480614002045135483 -0.01504042480614002045135483
Integrals of high or fractional order:
>>> airybi(-2,0.5); differint(airybi, -2, 0.5, 0) (0.0 + 0.5019859055341699223453257j) (0.0 + 0.5019859055341699223453257j) >>> airybi(-2,-4); differint(airybi,-2,-4,0) 0.2809314599922447252139092 0.2809314599922447252139092 >>> airybi(0,-1); airybi(0,-2); airybi(0,-3) 0.0 0.0 0.0
Integrals of the Bi-function can be evaluated at limit points:
>>> airybi(-1000000,-1); airybi(-inf,-1) 0.000002191261128063434047966873 0.0 >>> airybi(10,-1); airybi(+inf,-1) 147809803.1074067161675853 +inf >>> airybi(+inf,-2); airybi(+inf,-3) +inf +inf >>> airybi(-1000000,-2); airybi(-inf,-2) 0.4482883750599908479851085 0.4482883573538263579148237 >>> gamma('2/3')*power(3,'2/3')/(2*pi) 0.4482883573538263579148237 >>> airybi(-100000,-3); airybi(-inf,-3) -44828.52827206932872493133 -inf >>> airybi(-100000,-4); airybi(-inf,-4) 2241411040.437759489540248 +inf
airyaizero()
¶
- mpmath.airyaizero(k, derivative=0)¶
Gives the \(k\)-th zero of the Airy Ai-function, i.e. the \(k\)-th number \(a_k\) ordered by magnitude for which \(\operatorname{Ai}(a_k) = 0\).
Optionally, with derivative=1, the corresponding zero \(a'_k\) of the derivative function, i.e. \(\operatorname{Ai}'(a'_k) = 0\), is computed.
Examples
Some values of \(a_k\):
>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> airyaizero(1) -2.338107410459767038489197 >>> airyaizero(2) -4.087949444130970616636989 >>> airyaizero(3) -5.520559828095551059129856 >>> airyaizero(1000) -281.0315196125215528353364
Some values of \(a'_k\):
>>> airyaizero(1,1) -1.018792971647471089017325 >>> airyaizero(2,1) -3.248197582179836537875424 >>> airyaizero(3,1) -4.820099211178735639400616 >>> airyaizero(1000,1) -280.9378080358935070607097
Verification:
>>> chop(airyai(airyaizero(1))) 0.0 >>> chop(airyai(airyaizero(1,1),1)) 0.0
airybizero()
¶
- mpmath.airybizero(k, derivative=0, complex=0)¶
With complex=False, gives the \(k\)-th real zero of the Airy Bi-function, i.e. the \(k\)-th number \(b_k\) ordered by magnitude for which \(\operatorname{Bi}(b_k) = 0\).
With complex=True, gives the \(k\)-th complex zero in the upper half plane \(\beta_k\). Also the conjugate \(\overline{\beta_k}\) is a zero.
Optionally, with derivative=1, the corresponding zero \(b'_k\) or \(\beta'_k\) of the derivative function, i.e. \(\operatorname{Bi}'(b'_k) = 0\) or \(\operatorname{Bi}'(\beta'_k) = 0\), is computed.
Examples
Some values of \(b_k\):
>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> airybizero(1) -1.17371322270912792491998 >>> airybizero(2) -3.271093302836352715680228 >>> airybizero(3) -4.830737841662015932667709 >>> airybizero(1000) -280.9378112034152401578834
Some values of \(b_k\):
>>> airybizero(1,1) -2.294439682614123246622459 >>> airybizero(2,1) -4.073155089071828215552369 >>> airybizero(3,1) -5.512395729663599496259593 >>> airybizero(1000,1) -281.0315164471118527161362
Some values of \(\beta_k\):
>>> airybizero(1,complex=True) (0.9775448867316206859469927 + 2.141290706038744575749139j) >>> airybizero(2,complex=True) (1.896775013895336346627217 + 3.627291764358919410440499j) >>> airybizero(3,complex=True) (2.633157739354946595708019 + 4.855468179979844983174628j) >>> airybizero(1000,complex=True) (140.4978560578493018899793 + 243.3907724215792121244867j)
Some values of \(\beta'_k\):
>>> airybizero(1,1,complex=True) (0.2149470745374305676088329 + 1.100600143302797880647194j) >>> airybizero(2,1,complex=True) (1.458168309223507392028211 + 2.912249367458445419235083j) >>> airybizero(3,1,complex=True) (2.273760763013482299792362 + 4.254528549217097862167015j) >>> airybizero(1000,1,complex=True) (140.4509972835270559730423 + 243.3096175398562811896208j)
Verification:
>>> chop(airybi(airybizero(1))) 0.0 >>> chop(airybi(airybizero(1,1),1)) 0.0 >>> u = airybizero(1,complex=True) >>> chop(airybi(u)) 0.0 >>> chop(airybi(conj(u))) 0.0
The complex zeros (in the upper and lower half-planes respectively) asymptotically approach the rays \(z = R \exp(\pm i \pi /3)\):
>>> arg(airybizero(1,complex=True)) 1.142532510286334022305364 >>> arg(airybizero(1000,complex=True)) 1.047271114786212061583917 >>> arg(airybizero(1000000,complex=True)) 1.047197624741816183341355 >>> pi/3 1.047197551196597746154214
scorergi()
¶
- mpmath.scorergi(z, **kwargs)¶
Evaluates the Scorer function
\[\operatorname{Gi}(z) = \operatorname{Ai}(z) \int_0^z \operatorname{Bi}(t) dt + \operatorname{Bi}(z) \int_z^{\infty} \operatorname{Ai}(t) dt\]which gives a particular solution to the inhomogeneous Airy differential equation \(f''(z) - z f(z) = 1/\pi\). Another particular solution is given by the Scorer Hi-function (
scorerhi()
). The two functions are related as \(\operatorname{Gi}(z) + \operatorname{Hi}(z) = \operatorname{Bi}(z)\).Plots
# Scorer function Gi(x) and Gi'(x) on the real line plot([scorergi, diffun(scorergi)], [-10,10])
# Scorer function Gi(z) in the complex plane cplot(scorergi, [-8,8], [-8,8], points=50000)
Examples
Some values and limits:
>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> scorergi(0); 1/(power(3,'7/6')*gamma('2/3')) 0.2049755424820002450503075 0.2049755424820002450503075 >>> diff(scorergi, 0); 1/(power(3,'5/6')*gamma('1/3')) 0.1494294524512754526382746 0.1494294524512754526382746 >>> scorergi(+inf); scorergi(-inf) 0.0 0.0 >>> scorergi(1) 0.2352184398104379375986902 >>> scorergi(-1) -0.1166722172960152826494198
Evaluation for large arguments:
>>> scorergi(10) 0.03189600510067958798062034 >>> scorergi(100) 0.003183105228162961476590531 >>> scorergi(1000000) 0.0000003183098861837906721743873 >>> 1/(pi*1000000) 0.0000003183098861837906715377675 >>> scorergi(-1000) -0.08358288400262780392338014 >>> scorergi(-100000) 0.02886866118619660226809581 >>> scorergi(50+10j) (0.0061214102799778578790984 - 0.001224335676457532180747917j) >>> scorergi(-50-10j) (5.236047850352252236372551e+29 - 3.08254224233701381482228e+29j) >>> scorergi(100000j) (-8.806659285336231052679025e+6474077 + 8.684731303500835514850962e+6474077j)
Verifying the connection between Gi and Hi:
>>> z = 0.25 >>> scorergi(z) + scorerhi(z) 0.7287469039362150078694543 >>> airybi(z) 0.7287469039362150078694543
Verifying the differential equation:
>>> for z in [-3.4, 0, 2.5, 1+2j]: ... chop(diff(scorergi,z,2) - z*scorergi(z)) ... -0.3183098861837906715377675 -0.3183098861837906715377675 -0.3183098861837906715377675 -0.3183098861837906715377675
Verifying the integral representation:
>>> z = 0.5 >>> scorergi(z) 0.2447210432765581976910539 >>> Ai,Bi = airyai,airybi >>> Bi(z)*(Ai(inf,-1)-Ai(z,-1)) + Ai(z)*(Bi(z,-1)-Bi(0,-1)) 0.2447210432765581976910539
References
[DLMF] section 9.12: Scorer Functions
scorerhi()
¶
- mpmath.scorerhi(z, **kwargs)¶
Evaluates the second Scorer function
\[\operatorname{Hi}(z) = \operatorname{Bi}(z) \int_{-\infty}^z \operatorname{Ai}(t) dt - \operatorname{Ai}(z) \int_{-\infty}^z \operatorname{Bi}(t) dt\]which gives a particular solution to the inhomogeneous Airy differential equation \(f''(z) - z f(z) = 1/\pi\). See also
scorergi()
.Plots
# Scorer function Hi(x) and Hi'(x) on the real line plot([scorerhi, diffun(scorerhi)], [-10,2], [0,2])
# Scorer function Hi(z) in the complex plane cplot(scorerhi, [-8,8], [-8,8], points=50000)
Examples
Some values and limits:
>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> scorerhi(0); 2/(power(3,'7/6')*gamma('2/3')) 0.4099510849640004901006149 0.4099510849640004901006149 >>> diff(scorerhi,0); 2/(power(3,'5/6')*gamma('1/3')) 0.2988589049025509052765491 0.2988589049025509052765491 >>> scorerhi(+inf); scorerhi(-inf) +inf 0.0 >>> scorerhi(1) 0.9722051551424333218376886 >>> scorerhi(-1) 0.2206696067929598945381098
Evaluation for large arguments:
>>> scorerhi(10) 455641153.5163291358991077 >>> scorerhi(100) 6.041223996670201399005265e+288 >>> scorerhi(1000000) 7.138269638197858094311122e+289529652 >>> scorerhi(-10) 0.0317685352825022727415011 >>> scorerhi(-100) 0.003183092495767499864680483 >>> scorerhi(100j) (-6.366197716545672122983857e-9 + 0.003183098861710582761688475j) >>> scorerhi(50+50j) (-5.322076267321435669290334e+63 + 1.478450291165243789749427e+65j) >>> scorerhi(-1000-1000j) (0.0001591549432510502796565538 - 0.000159154943091895334973109j)
Verifying the differential equation:
>>> for z in [-3.4, 0, 2, 1+2j]: ... chop(diff(scorerhi,z,2) - z*scorerhi(z)) ... 0.3183098861837906715377675 0.3183098861837906715377675 0.3183098861837906715377675 0.3183098861837906715377675
Verifying the integral representation:
>>> z = 0.5 >>> scorerhi(z) 0.6095559998265972956089949 >>> Ai,Bi = airyai,airybi >>> Bi(z)*(Ai(z,-1)-Ai(-inf,-1)) - Ai(z)*(Bi(z,-1)-Bi(-inf,-1)) 0.6095559998265972956089949
Coulomb wave functions¶
coulombf()
¶
- mpmath.coulombf(l, eta, z)¶
Calculates the regular Coulomb wave function
\[F_l(\eta,z) = C_l(\eta) z^{l+1} e^{-iz} \,_1F_1(l+1-i\eta, 2l+2, 2iz)\]where the normalization constant \(C_l(\eta)\) is as calculated by
coulombc()
. This function solves the differential equation\[f''(z) + \left(1-\frac{2\eta}{z}-\frac{l(l+1)}{z^2}\right) f(z) = 0.\]A second linearly independent solution is given by the irregular Coulomb wave function \(G_l(\eta,z)\) (see
coulombg()
) and thus the general solution is \(f(z) = C_1 F_l(\eta,z) + C_2 G_l(\eta,z)\) for arbitrary constants \(C_1\), \(C_2\). Physically, the Coulomb wave functions give the radial solution to the Schrodinger equation for a point particle in a \(1/z\) potential; \(z\) is then the radius and \(l\), \(\eta\) are quantum numbers.The Coulomb wave functions with real parameters are defined in Abramowitz & Stegun, section 14. However, all parameters are permitted to be complex in this implementation (see references).
Plots
# Regular Coulomb wave functions -- equivalent to figure 14.3 in A&S F1 = lambda x: coulombf(0,0,x) F2 = lambda x: coulombf(0,1,x) F3 = lambda x: coulombf(0,5,x) F4 = lambda x: coulombf(0,10,x) F5 = lambda x: coulombf(0,x/2,x) plot([F1,F2,F3,F4,F5], [0,25], [-1.2,1.6])
# Regular Coulomb wave function in the complex plane cplot(lambda z: coulombf(1,1,z), points=50000)
Examples
Evaluation is supported for arbitrary magnitudes of \(z\):
>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> coulombf(2, 1.5, 3.5) 0.4080998961088761187426445 >>> coulombf(-2, 1.5, 3.5) 0.7103040849492536747533465 >>> coulombf(2, 1.5, '1e-10') 4.143324917492256448770769e-33 >>> coulombf(2, 1.5, 1000) 0.4482623140325567050716179 >>> coulombf(2, 1.5, 10**10) -0.066804196437694360046619
Verifying the differential equation:
>>> l, eta, z = 2, 3, mpf(2.75) >>> A, B = 1, 2 >>> f = lambda z: A*coulombf(l,eta,z) + B*coulombg(l,eta,z) >>> chop(diff(f,z,2) + (1-2*eta/z - l*(l+1)/z**2)*f(z)) 0.0
A Wronskian relation satisfied by the Coulomb wave functions:
>>> l = 2 >>> eta = 1.5 >>> F = lambda z: coulombf(l,eta,z) >>> G = lambda z: coulombg(l,eta,z) >>> for z in [3.5, -1, 2+3j]: ... chop(diff(F,z)*G(z) - F(z)*diff(G,z)) ... 1.0 1.0 1.0
Another Wronskian relation:
>>> F = coulombf >>> G = coulombg >>> for z in [3.5, -1, 2+3j]: ... chop(F(l-1,eta,z)*G(l,eta,z)-F(l,eta,z)*G(l-1,eta,z) - l/sqrt(l**2+eta**2)) ... 0.0 0.0 0.0
An integral identity connecting the regular and irregular wave functions:
>>> l, eta, z = 4+j, 2-j, 5+2j >>> coulombf(l,eta,z) + j*coulombg(l,eta,z) (0.7997977752284033239714479 + 0.9294486669502295512503127j) >>> g = lambda t: exp(-t)*t**(l-j*eta)*(t+2*j*z)**(l+j*eta) >>> j*exp(-j*z)*z**(-l)/fac(2*l+1)/coulombc(l,eta)*quad(g, [0,inf]) (0.7997977752284033239714479 + 0.9294486669502295512503127j)
Some test case with complex parameters, taken from Michel [2]:
>>> mp.dps = 15 >>> coulombf(1+0.1j, 50+50j, 100.156) (-1.02107292320897e+15 - 2.83675545731519e+15j) >>> coulombg(1+0.1j, 50+50j, 100.156) (2.83675545731519e+15 - 1.02107292320897e+15j) >>> coulombf(1e-5j, 10+1e-5j, 0.1+1e-6j) (4.30566371247811e-14 - 9.03347835361657e-19j) >>> coulombg(1e-5j, 10+1e-5j, 0.1+1e-6j) (778709182061.134 + 18418936.2660553j)
The following reproduces a table in Abramowitz & Stegun, at twice the precision:
>>> mp.dps = 10 >>> eta = 2; z = 5 >>> for l in [5, 4, 3, 2, 1, 0]: ... print("%s %s %s" % (l, coulombf(l,eta,z), ... diff(lambda z: coulombf(l,eta,z), z))) ... 5 0.09079533488 0.1042553261 4 0.2148205331 0.2029591779 3 0.4313159311 0.320534053 2 0.7212774133 0.3952408216 1 0.9935056752 0.3708676452 0 1.143337392 0.2937960375
References
I.J. Thompson & A.R. Barnett, “Coulomb and Bessel Functions of Complex Arguments and Order”, J. Comp. Phys., vol 64, no. 2, June 1986.
N. Michel, “Precise Coulomb wave functions for a wide range of complex \(l\), \(\eta\) and \(z\)”, http://arxiv.org/abs/physics/0702051v1
coulombg()
¶
- mpmath.coulombg(l, eta, z)¶
Calculates the irregular Coulomb wave function
\[G_l(\eta,z) = \frac{F_l(\eta,z) \cos(\chi) - F_{-l-1}(\eta,z)}{\sin(\chi)}\]where \(\chi = \sigma_l - \sigma_{-l-1} - (l+1/2) \pi\) and \(\sigma_l(\eta) = (\ln \Gamma(1+l+i\eta)-\ln \Gamma(1+l-i\eta))/(2i)\).
See
coulombf()
for additional information.Plots
# Irregular Coulomb wave functions -- equivalent to figure 14.5 in A&S F1 = lambda x: coulombg(0,0,x) F2 = lambda x: coulombg(0,1,x) F3 = lambda x: coulombg(0,5,x) F4 = lambda x: coulombg(0,10,x) F5 = lambda x: coulombg(0,x/2,x) plot([F1,F2,F3,F4,F5], [0,30], [-2,2])
# Irregular Coulomb wave function in the complex plane cplot(lambda z: coulombg(1,1,z), points=50000)
Examples
Evaluation is supported for arbitrary magnitudes of \(z\):
>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> coulombg(-2, 1.5, 3.5) 1.380011900612186346255524 >>> coulombg(2, 1.5, 3.5) 1.919153700722748795245926 >>> coulombg(-2, 1.5, '1e-10') 201126715824.7329115106793 >>> coulombg(-2, 1.5, 1000) 0.1802071520691149410425512 >>> coulombg(-2, 1.5, 10**10) 0.652103020061678070929794
The following reproduces a table in Abramowitz & Stegun, at twice the precision:
>>> mp.dps = 10 >>> eta = 2; z = 5 >>> for l in [1, 2, 3, 4, 5]: ... print("%s %s %s" % (l, coulombg(l,eta,z), ... -diff(lambda z: coulombg(l,eta,z), z))) ... 1 1.08148276 0.6028279961 2 1.496877075 0.5661803178 3 2.048694714 0.7959909551 4 3.09408669 1.731802374 5 5.629840456 4.549343289
Evaluation close to the singularity at \(z = 0\):
>>> mp.dps = 15 >>> coulombg(0,10,1) 3088184933.67358 >>> coulombg(0,10,'1e-10') 5554866000719.8 >>> coulombg(0,10,'1e-100') 5554866221524.1
Evaluation with a half-integer value for \(l\):
>>> coulombg(1.5, 1, 10) 0.852320038297334
coulombc()
¶
- mpmath.coulombc(l, eta)¶
Gives the normalizing Gamow constant for Coulomb wave functions,
\[C_l(\eta) = 2^l \exp\left(-\pi \eta/2 + [\ln \Gamma(1+l+i\eta) + \ln \Gamma(1+l-i\eta)]/2 - \ln \Gamma(2l+2)\right),\]where the log gamma function with continuous imaginary part away from the negative half axis (see
loggamma()
) is implied.This function is used internally for the calculation of Coulomb wave functions, and automatically cached to make multiple evaluations with fixed \(l\), \(\eta\) fast.
Confluent U and Whittaker functions¶
hyperu()
¶
- mpmath.hyperu(a, b, z)¶
Gives the Tricomi confluent hypergeometric function \(U\), also known as the Kummer or confluent hypergeometric function of the second kind. This function gives a second linearly independent solution to the confluent hypergeometric differential equation (the first is provided by \(\,_1F_1\) – see
hyp1f1()
).Examples
Evaluation for arbitrary complex arguments:
>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> hyperu(2,3,4) 0.0625 >>> hyperu(0.25, 5, 1000) 0.1779949416140579573763523 >>> hyperu(0.25, 5, -1000) (0.1256256609322773150118907 - 0.1256256609322773150118907j)
The \(U\) function may be singular at \(z = 0\):
>>> hyperu(1.5, 2, 0) +inf >>> hyperu(1.5, -2, 0) 0.1719434921288400112603671
Verifying the differential equation:
>>> a, b = 1.5, 2 >>> f = lambda z: hyperu(a,b,z) >>> for z in [-10, 3, 3+4j]: ... chop(z*diff(f,z,2) + (b-z)*diff(f,z) - a*f(z)) ... 0.0 0.0 0.0
An integral representation:
>>> a,b,z = 2, 3.5, 4.25 >>> hyperu(a,b,z) 0.06674960718150520648014567 >>> quad(lambda t: exp(-z*t)*t**(a-1)*(1+t)**(b-a-1),[0,inf]) / gamma(a) 0.06674960718150520648014567
whitm()
¶
- mpmath.whitm(k, m, z)¶
Evaluates the Whittaker function \(M(k,m,z)\), which gives a solution to the Whittaker differential equation
\[\frac{d^2f}{dz^2} + \left(-\frac{1}{4}+\frac{k}{z}+ \frac{(\frac{1}{4}-m^2)}{z^2}\right) f = 0.\]A second solution is given by
whitw()
.The Whittaker functions are defined in Abramowitz & Stegun, section 13.1. They are alternate forms of the confluent hypergeometric functions \(\,_1F_1\) and \(U\):
\[ \begin{align}\begin{aligned}M(k,m,z) = e^{-\frac{1}{2}z} z^{\frac{1}{2}+m} \,_1F_1(\tfrac{1}{2}+m-k, 1+2m, z)\\W(k,m,z) = e^{-\frac{1}{2}z} z^{\frac{1}{2}+m} U(\tfrac{1}{2}+m-k, 1+2m, z).\end{aligned}\end{align} \]Examples
Evaluation for arbitrary real and complex arguments is supported:
>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> whitm(1, 1, 1) 0.7302596799460411820509668 >>> whitm(1, 1, -1) (0.0 - 1.417977827655098025684246j) >>> whitm(j, j/2, 2+3j) (3.245477713363581112736478 - 0.822879187542699127327782j) >>> whitm(2, 3, 100000) 4.303985255686378497193063e+21707
Evaluation at zero:
>>> whitm(1,-1,0); whitm(1,-0.5,0); whitm(1,0,0) +inf nan 0.0
We can verify that
whitm()
numerically satisfies the differential equation for arbitrarily chosen values:>>> k = mpf(0.25) >>> m = mpf(1.5) >>> f = lambda z: whitm(k,m,z) >>> for z in [-1, 2.5, 3, 1+2j]: ... chop(diff(f,z,2) + (-0.25 + k/z + (0.25-m**2)/z**2)*f(z)) ... 0.0 0.0 0.0 0.0
An integral involving both
whitm()
andwhitw()
, verifying evaluation along the real axis:>>> quad(lambda x: exp(-x)*whitm(3,2,x)*whitw(1,-2,x), [0,inf]) 3.438869842576800225207341 >>> 128/(21*sqrt(pi)) 3.438869842576800225207341
whitw()
¶
- mpmath.whitw(k, m, z)¶
Evaluates the Whittaker function \(W(k,m,z)\), which gives a second solution to the Whittaker differential equation. (See
whitm()
.)Examples
Evaluation for arbitrary real and complex arguments is supported:
>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> whitw(1, 1, 1) 1.19532063107581155661012 >>> whitw(1, 1, -1) (-0.9424875979222187313924639 - 0.2607738054097702293308689j) >>> whitw(j, j/2, 2+3j) (0.1782899315111033879430369 - 0.01609578360403649340169406j) >>> whitw(2, 3, 100000) 1.887705114889527446891274e-21705 >>> whitw(-1, -1, 100) 1.905250692824046162462058e-24
Evaluation at zero:
>>> for m in [-1, -0.5, 0, 0.5, 1]: ... whitw(1, m, 0) ... +inf nan 0.0 nan +inf
We can verify that
whitw()
numerically satisfies the differential equation for arbitrarily chosen values:>>> k = mpf(0.25) >>> m = mpf(1.5) >>> f = lambda z: whitw(k,m,z) >>> for z in [-1, 2.5, 3, 1+2j]: ... chop(diff(f,z,2) + (-0.25 + k/z + (0.25-m**2)/z**2)*f(z)) ... 0.0 0.0 0.0 0.0
Parabolic cylinder functions¶
pcfd()
¶
- mpmath.pcfd(n, z, **kwargs)¶
Gives the parabolic cylinder function in Whittaker’s notation \(D_n(z) = U(-n-1/2, z)\) (see
pcfu()
). It solves the differential equation\[y'' + \left(n + \frac{1}{2} - \frac{1}{4} z^2\right) y = 0.\]and can be represented in terms of Hermite polynomials (see
hermite()
) as\[D_n(z) = 2^{-n/2} e^{-z^2/4} H_n\left(\frac{z}{\sqrt{2}}\right).\]Plots
# Parabolic cylinder function D_n(x) on the real line for n=0,1,2,3,4 d0 = lambda x: pcfd(0,x) d1 = lambda x: pcfd(1,x) d2 = lambda x: pcfd(2,x) d3 = lambda x: pcfd(3,x) d4 = lambda x: pcfd(4,x) plot([d0,d1,d2,d3,d4],[-7,7])
Examples
>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> pcfd(0,0); pcfd(1,0); pcfd(2,0); pcfd(3,0) 1.0 0.0 -1.0 0.0 >>> pcfd(4,0); pcfd(-3,0) 3.0 0.6266570686577501256039413 >>> pcfd('1/2', 2+3j) (-5.363331161232920734849056 - 3.858877821790010714163487j) >>> pcfd(2, -10) 1.374906442631438038871515e-9
Verifying the differential equation:
>>> n = mpf(2.5) >>> y = lambda z: pcfd(n,z) >>> z = 1.75 >>> chop(diff(y,z,2) + (n+0.5-0.25*z**2)*y(z)) 0.0
Rational Taylor series expansion when \(n\) is an integer:
>>> taylor(lambda z: pcfd(5,z), 0, 7) [0.0, 15.0, 0.0, -13.75, 0.0, 3.96875, 0.0, -0.6015625]
pcfu()
¶
- mpmath.pcfu(a, z, **kwargs)¶
Gives the parabolic cylinder function \(U(a,z)\), which may be defined for \(\Re(z) > 0\) in terms of the confluent U-function (see
hyperu()
) by\[U(a,z) = 2^{-\frac{1}{4}-\frac{a}{2}} e^{-\frac{1}{4} z^2} U\left(\frac{a}{2}+\frac{1}{4}, \frac{1}{2}, \frac{1}{2}z^2\right)\]or, for arbitrary \(z\),
\[e^{-\frac{1}{4}z^2} U(a,z) = U(a,0) \,_1F_1\left(-\tfrac{a}{2}+\tfrac{1}{4}; \tfrac{1}{2}; -\tfrac{1}{2}z^2\right) + U'(a,0) z \,_1F_1\left(-\tfrac{a}{2}+\tfrac{3}{4}; \tfrac{3}{2}; -\tfrac{1}{2}z^2\right).\]Examples
Connection to other functions:
>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> z = mpf(3) >>> pcfu(0.5,z) 0.03210358129311151450551963 >>> sqrt(pi/2)*exp(z**2/4)*erfc(z/sqrt(2)) 0.03210358129311151450551963 >>> pcfu(0.5,-z) 23.75012332835297233711255 >>> sqrt(pi/2)*exp(z**2/4)*erfc(-z/sqrt(2)) 23.75012332835297233711255 >>> pcfu(0.5,-z) 23.75012332835297233711255 >>> sqrt(pi/2)*exp(z**2/4)*erfc(-z/sqrt(2)) 23.75012332835297233711255
pcfv()
¶
- mpmath.pcfv(a, z, **kwargs)¶
Gives the parabolic cylinder function \(V(a,z)\), which can be represented in terms of
pcfu()
as\[V(a,z) = \frac{\Gamma(a+\tfrac{1}{2}) (U(a,-z)-\sin(\pi a) U(a,z)}{\pi}.\]Examples
Wronskian relation between \(U\) and \(V\):
>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> a, z = 2, 3 >>> pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z) 0.7978845608028653558798921 >>> sqrt(2/pi) 0.7978845608028653558798921 >>> a, z = 2.5, 3 >>> pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z) 0.7978845608028653558798921 >>> a, z = 0.25, -1 >>> pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z) 0.7978845608028653558798921 >>> a, z = 2+1j, 2+3j >>> chop(pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z)) 0.7978845608028653558798921
pcfw()
¶
- mpmath.pcfw(a, z, **kwargs)¶
Gives the parabolic cylinder function \(W(a,z)\) defined in (DLMF 12.14).
Examples
Value at the origin:
>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> a = mpf(0.25) >>> pcfw(a,0) 0.9722833245718180765617104 >>> power(2,-0.75)*sqrt(abs(gamma(0.25+0.5j*a)/gamma(0.75+0.5j*a))) 0.9722833245718180765617104 >>> diff(pcfw,(a,0),(0,1)) -0.5142533944210078966003624 >>> -power(2,-0.25)*sqrt(abs(gamma(0.75+0.5j*a)/gamma(0.25+0.5j*a))) -0.5142533944210078966003624